
4 Compromised - Buffer-Overflows, from Intel to SPARC Version 8

ATT vs Intel?!? Almost everything in the Intel world of assembler is dealt with via Intel

format assembler code. This is not how it is in the Unix world. Since the

old PDP’s the unix environment assembler syntax has followed ATT

style. This might throw you off if you are used to any low level program-

ming in the PC world. I would hate to see simple semantics discourage

anyone so here are the main differences in a nutshell: [Figure 6].

I see where you’re
going but is this
really as big as you
say?

Many people just don’t see how prevalent bounds checking problems are.

The number of incidents in the Unix world should be proof enough. Sure

there are a lot of false positives when you start going through source code

but there are still many more areas where the buffer overflow can be a

valid security concern. Finally programmers have started to drop the bla-

tantly bad practices that most of the old well known coding problem

were. Face it, people are slow and you have to hammer into their head

what good coding practices are. Better yet they need to understand the

theory and thinking of how hackers think and work in order to avoid most

of the potential holes.

Although buffer overflow potential is a major problem in Unix ‘C’ pro-

grams... I proffer, from background and interaction, that this sort of prob-

lem is even MORE prevalent in the Microsoft world. When you find one

of these in Windows 3.1/DOS or Win95 you pretty much own the barn as

there isn’t a really clear cut design of where rings 1,2,3,etc. live (i.e.

everything is at ring 1 for all intents and purposes).

[example of number of stupid problems i.e. system(), moderate problems,

getcwd(), and difficult problems - sprintf, etc. for a large package].

Compromised - Buffer-Overflows, from Intel to SPARC Version 8 3

This is all that you really need to understand in order to further research

buffer overflows and, with a text book or a friend, start writing your own

exploits. Programmers, are you getting this?!?! How much more poor

coding must people endure before you’ve riddled everything in all of the

major operating systems with low level bugs and holes!

Details! I want
details!

The Intel stuff is fairly straight forward. If you get stuck all you need to

do is consult your local virus writer. He/she will be able to give you

plenty of details. So... since you probably have a good contact for Intel

OS’s (FreeBSD, BSDI, Linux, etc.) I’ll do the details on the SPARC

setup. [What’s that you say? You don’t know any good viral writers?

Shame on you! These people will be able to open up an entire world of

exploits that certain groups have enjoyed singular possession of.]

Here’s what a stack frame in Solaris looks like: [figure 4].

[side note... the callee... not the caller, has to shift the register window

and adjust the stack pointer in the SPARC architecture.. not the caller]

Understanding that this is the information on the stack (as referenced by

the stack pointer) you should be able to see that if you overwrite the

instruction pointer with an address of your preference and let the routine

do it’s RET, you will start executing whatever code you want.

All you need to do is something the equivalent of:

 for (i=0; i< 4096; i++)

 buffer[i] = 0x90;

(where buffer is really something like: char buffer[2];) This will start

trampling over things fairly quickly.

Using the above pseudo example and a program like gdb you will quickly

see where you need to be overwriting.

What does the code I
have the IP point to
need to look like?

[figure 5 - libc problem]

2 Compromised - Buffer-Overflows, from Intel to SPARC Version 8

Great... what’s so
cool about this (aka...
I don’t get it)?

To understand the importance of this it is necessary to understand a little

about the structure of a ‘C’ program when it is run and also a little about

how the processor deals with the machine code beneath it [figure 1].

Next one needs to understand how the underlying architecture deals with

the Instruction Pointer (often referred to as the Program Counter), a little

about the registers on the chip in question and what they reference [figure

2].

The IP register points to either the address of the next instruction to be

executed or the address of the instruction currently being executed

(depending upon how the designers set things up). This is the crux of the

matter at hand. In general terms, the coder does not directly access the IP

register. After each instruction is executed the IP value is automatically

incremented to point to the address of the next instruction [figure 3].

Now, when a call is made in your program the system needs to know

where to go for the next instruction and how to get back to the last place

it was. The call instruction usually specifies the value needed to be added

to the IP for the address of the next instruction to be executed and pushes

the current IP onto the stack (this is oversimplified as there are nuances

between how different architectures and systems deal with this... if any-

one has questions they can ask me after the conference over a beer). The

return instruction in the called function pops the stack value back into the

IP to resume execution at the next instruction after the call.

Yeah... so? I’m
getting bored...

You remember the stack in figure 1 don’t you? This is where this infor-

mation is being stored and retrieved from. If someone doesn’t do correct

bounds checking you can write all the way from the heap, through the

unused address space (if it exists on this architecture) and into the stack.

Heck, you can even write through the stack if you want and have fun with

the command line args and environment variables.

All you need to do is be clever enough to overwrite the saved IP that is on

the stack with the location that you want to IP to point to upon return.

This address will presumably contain the opcodes and operands of the

code that you have constructed and put at this address. Perhaps some-

thing ingenious like execve(“/bin/sh”, 0, 0) / syscall(59,”/bin/sh”, 0, 0);

or even something nasty like the machine instruction for HLT (assuming

you are in the proper ring).

1

Compromised - Buffer-

Overflows, from Intel to

SPARC Version 8

mudge@l0pht.com

The purpose of this talk is to familiarize

people with buffer overflows. What they are,

why they work and how to approach them.

What the heck is a
buffer overflow?

A buffer overflow occurs when an object of size x+y is placed into a con-

tainer of size x. This can happen in many situations when the program-

mer does not take proper care to bounds check what their functions do

and what they are placing into variables inside their programs. As usual,

the fun begins when this programming mistake is made at a place that

allows user definable data to be inserted.

Some common examples are:

(less common)

char input[20];

gets(input);

(more common)

char env[20];

env = getenv(“FOOBAR”);

Buffer overflows are by far the most common security problem in cod-

ing. For every system(), popen(), etc. that you find in source code there

are at least 20x’s as many places where the potential for abuse through

improper bounds checking exists. Thus is one of the great legacies that

the ‘C’ programming language affords us. gets() and copying environ-

ments are by no means the only place for buffer overflows to happen.

